

In Home Anti-Gravity Harness

Team 10

Khaled Alosaimi

Eileen Baker

Hasan Farman

A.J. Garcia

Noah Oliver

Project Description

- ➤ The goal of this project is to design a DIY manual for an anti-gravity balancing harness system
- The client is Dr. Kyle Winfree from the Wearable Informatics Lab at NAU
- ➤ The product is directed towards children (under the age of 5) who need assistance moving about the house
- The system must be simple enough to build with limited resources and engineering knowledge

- ➤ The team originally expected to build a mobile device but encountered safety issues
- ➤ The client has expressed a desire in making the device able to assist the child with moving from sit to stand
- Originally the team's biggest problem was ease of assembly due to manufacturing limitations
 - Now there are problems with storage capabilities

Updates – New Design

- 1. EZUP base
- 2. Support bar
- **3.** Track system for X direction movement
- 4. Slider Bar for Y direction movement
 - **5.** Connectors between support bar slider bar

Updates - Original Design

Changes

- Support bar design
- Wheels roll on installed track
- Use slider bar to give user more mobility
- Attached the guide-rail to the side of EZ-up frame

5

Updates - New Design

Purchases

Part	Function
Guide Rails	Allows cross-bar to slide along the frame
Main Support Bar	Holds weight distributor
Wheels	Roll along track
EZ-up	Frame

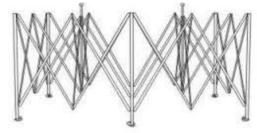
First Guide Rail Attempt

- Form double triangle shape to attach track along side of frame
- Attach vertical supports to the frame
- Collapsibility problems

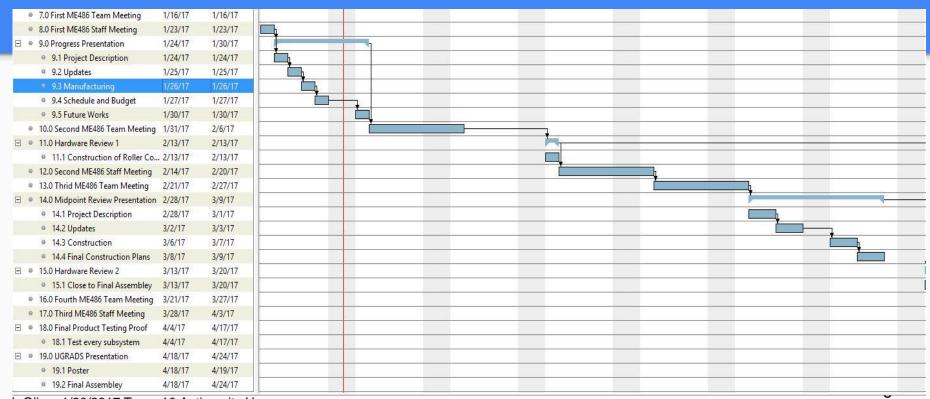
Manufacturing

➤ Have guidance rails done before Hardware Review 1 (2/13)

- Finish harness attachment system by middle of February
- Know which materials are needed for final design by the beginning of March
- ➤ Begin DOE testing by 3/20 with final design
 - Structural Integrity
 - Ease of Movement


Manufacturing

> Team Skills


- Harness and attachments
- Loading
- Design Frame
- Roller System
- Budget

Schedule

Budget

	Cost	
Harness	\$16	Aluminum Track
Spreader Bar	\$75	Guide Rail(2)
	i	Garage Rollers
Ez-Up	\$219	SuperSlide Closet Rod

	Cost
Aluminum Track	\$0.01
Guide Rail(2)	\$45
Garage Rollers	\$5
SuperSlide Closet Rod	\$12 10

Hasan Farman 1/30/2017 Team 10 Antigravity Harness

Budget

Total Amount Available: \$1500

Actual Expenses to Date: \$371.34

Resulting Balance: \$1,128.66

Future Plans

> Continue manufacturing guide rail system to determine best design

- Add new sections to midpoint report
- Update CAD package and Operation Manual as design evolves
- Formulate detailed testing plan

Questions or Comments

